50 research outputs found

    Exponential-function-based droop control for islanded microgrids

    Get PDF

    Data-Driven Control for Interlinked AC/DC Microgrids via Model-Free Adaptive Control and Dual-Droop Control

    Get PDF

    Line Inductance Stability Operation Domain Assessment for Weak Grids With Multiple Constant Power Loads

    Get PDF
    Weak grids are gaining considerable attention since power generation resources are remote from constant power loads (CPLs), which results in low-frequency/harmonic oscillation. Meanwhile, due to the play, and plug demand of modern power system, the line inductance of weak grids often changes, which is also regarded as the variation regarding short circuit ratio (SCR). Based on this, the conventional impedance-based stability operation point assessment approaches should be expanded into stability domain assessment approach considering the line inductance variation. Therefore, the stability-oriented line inductance stability domain assessment approach for weak grids with CPLs is proposed in this paper. Firstly, the source impedance matrix of weak grid, and load admittance matrix of CPLs are separately built. Secondly, an improved stability forbidden domain criterion is proposed through related mapping transformation process, which has lower conservatism than two previous improved stability criteria. Thirdly, the improved stability forbidden domain criterion is switched into the condition that the intermediate matrices are Hurwitz. Meanwhile, the line inductance stability domain is directly obtained through these intermediate matrices, and guardian map theory. Finally, the simulation, and experiment results illustrate that the proposed approach has less conservatism, and high efficiency.This work was supported by National Key Research, and Development Program of China under Grant 2018YFA0702200

    An Adaptive Fuzzy Min-Max Neural Network Classifier Based on Principle Component Analysis and Adaptive Genetic Algorithm

    Get PDF
    A novel adaptive fuzzy min-max neural network classifier called AFMN is proposed in this paper. Combined with principle component analysis and adaptive genetic algorithm, this integrated system can serve as a supervised and real-time classification technique. Considering the loophole in the expansion-contraction process of FMNN and GFMN and the overcomplex network architecture of FMCN, AFMN maintains the simple architecture of FMNN for fast learning and testing while rewriting the membership function, the expansion and contraction rules for hyperbox generation to solve the confusion problems in the hyperbox overlap region. Meanwhile, principle component analysis is adopted to finish dataset dimensionality reduction for increasing learning efficiency. After training, the confidence coefficient of each hyperbox is calculated based on the distribution of samples. During classifying procedure, utilizing adaptive genetic algorithm to complete parameter optimization for AFMN can also fasten the entire procedure than traversal method. For conditions where training samples are insufficient, data core weight updating is indispensible to enhance the robustness of classifier and the modified membership function can adjust itself according to the input varieties. The paper demonstrates the performance of AFMN through substantial examples in terms of classification accuracy and operating speed by comparing it with FMNN, GFMN, and FMCN

    Differential responses to genotoxic agents between induced pluripotent stem cells and tumor cell lines

    Get PDF
    Given potential values of induced pluripotent stem (iPS) cells in basic biomedical research and regenerative medicine, it is important to understand how these cells regulate their genome stability in response to environmental toxins and carcinogens. The present study characterized the effect of Cr(VI), a well-known genotoxic agent and environmental carcinogen, on major molecular components of DNA damage response pathways in human iPS cells. We compared the effect of Cr(VI) on human iPS cells with two established cell lines, Tera-1 (teratoma origin) and BEAS-2B (lung epithelial origin). We also studied the effect of hydrogen peroxide and doxorubicin on modulating DNA damage responses in these cell types. We demonstrated that ATM and p53 phosphorylation is differentially regulated in human iPS cells compared with Tera-1 and BEAS-2B cells after exposure to various genotoxic agents. Moreover, we observed that inhibition of CK2, but not p38, promotes phosphorylation of p53(S392) in iPS cells. Combined, our data reveal some unique features of DNA damage responses in human iPS cells

    Modeling Single-Phase Inverter and Its Decentralized Coordinated Control by Using Feedback Linearization

    Get PDF
    It is a very crucial problem to make a microgrid operated reasonably and stably. Considering the nonlinear mathematics model of inverter established in this paper, the input-output feedback linearization method is used to transform the nonlinear mathematics model of inverters to a linear tracking synchronization and consensus regulation control problem. Based on the linear mathematics model and multiagent consensus algorithm, a decentralized coordinated controller is proposed to make amplitudes and angles of voltages from inverters be consensus and active and reactive power shared in the desired ratio. The proposed control is totally distributed because each inverter only requires local and one neighbor’s information with sparse communication structure based on multiagent system. The hybrid consensus algorithm is used to keep the amplitude of the output voltages following the leader and the angles of output voltage as consensus. Then the microgrid can be operated more efficiently and the circulating current between DGs can be effectively suppressed. The effectiveness of the proposed method is proved through simulation results of a typical microgrid system

    GmFT2a, a Soybean Homolog of FLOWERING LOCUS T, Is Involved in Flowering Transition and Maintenance

    Get PDF
    BACKGROUND: Flowering reversion can be induced in soybean (Glycine max L. Merr.), a typical short-day (SD) dicot, by switching from SD to long-day (LD) photoperiods. This process may involve florigen, putatively encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana. However, little is known about the potential function of soybean FT homologs in flowering reversion. METHODS: A photoperiod-responsive FT homologue GmFT (renamed as GmFT2a hereafter) was cloned from the photoperiod-sensitive cultivar Zigongdongdou. GmFT2a gene expression under different photoperiods was analyzed by real-time quantitative PCR. In situ hybridization showed direct evidence for its expression during flowering-related processes. GmFT2a was shown to promote flowering using transgenic studies in Arabidopsis and soybean. The effects of photoperiod and temperature on GmFT2a expression were also analyzed in two cultivars with different photoperiod-sensitivities. RESULTS: GmFT2a expression is regulated by photoperiod. Analyses of GmFT2a transcripts revealed a strong correlation between GmFT2a expression and flowering maintenance. GmFT2a transcripts were observed continuously within the vascular tissue up to the shoot apex during flowering. By contrast, transcripts decreased to undetectable levels during flowering reversion. In grafting experiments, the early-flowering, photoperiod-insensitive stock Heihe27 promotes the appearance of GmFT2a transcripts in the shoot apex of scion Zigongdongdou under noninductive LD conditions. The photothermal effects of GmFT2a expression diversity in cultivars with different photoperiod-sensitivities and a hypothesis is proposed. CONCLUSION: GmFT2a expression is associated with flowering induction and maintenance. Therefore, GmFT2a is a potential target gene for soybean breeding, with the aim of increasing geographic adaptation of this crop

    The Global Burden of Alveolar Echinococcosis

    Get PDF
    Human alveolar echinococcosis (AE), caused by the larval stage of the fox tapeworm Echinococcus multilocularis, is amongst the world's most dangerous zoonoses. Transmission to humans is by consumption of parasite eggs which are excreted in the faeces of the definitive hosts: foxes and, increasingly, dogs. Transmission can be through contact with the definitive host or indirectly through contamination of food or possibly water with parasite eggs. We made an intensive search of English, Russian, Chinese and other language databases. We targeted data which could give country specific incidence or prevalence of disease and searched for data from every country we believed to be endemic for AE. We also used data from other sources (often unpublished). From this information we were able to make an estimate of the annual global incidence of disease and disease burden using standard techniques for calculation of DALYs. Our studies suggest that AE results in a median of 18,235 cases globally with a burden of 666,433 DALYs per annum. This is the first estimate of the global burden of AE both in terms of global incidence and DALYs and demonstrates the burden of AE is comparable to several diseases in the neglected tropical disease cluster

    Male fertility: A case of enzyme identity

    Get PDF
    AbstractThe plant hormone jasmonate has been implicated in male fertility in Arabidopsis. Recent studies have identified the enzyme required for a critical step of jasmonate synthesis in anthers and shown that this enzyme really is required for male fertility

    Research on a Three-Phase Energy Mutual-Aid Strategy for a Grid-Connected Inverter Based on Constructed Negative Sequence Current Control

    No full text
    With the increased grid-connected capacity of a single-phase distributed power supply, three-phase power unbalance is more likely to occur in a power grid. Three-phase power unbalance can further lead to three-phase voltage unbalance, which can have adverse effects on power quality and power supply reliability. Therefore, there is a need to build a three-phase power transmission channel to realize power exchanging among phases. In this paper, a novel grid-connected inverter control strategy for three-phase power exchanging is proposed based on constructed negative sequence current control. A completed negative sequence current control loop is added to a conventional three-bridge inverter to realize the decoupling control of three-phase grid current, and then three-phase power exchanging is realized. On this basis, this paper further puts forward a strategy for three-phase power exchanging aimed at three-phase voltage balance. Correspondingly, the three-phase grid current is controlled according to the feedback of the three-phase voltage. Then, three-phase voltage balance is achieved by three-phase power exchanging. The simulation and experimental results show that the proposed strategy is suitable for a three-phase unbalanced power grid, which can realize three-phase power exchanging, and further, can achieve three-phase voltage balance. The proposed strategy can help to improve power quality and supply reliability
    corecore